首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21748篇
  免费   2136篇
  国内免费   1048篇
电工技术   1155篇
综合类   1237篇
化学工业   6934篇
金属工艺   1618篇
机械仪表   822篇
建筑科学   624篇
矿业工程   511篇
能源动力   2299篇
轻工业   2118篇
水利工程   128篇
石油天然气   924篇
武器工业   572篇
无线电   1210篇
一般工业技术   2730篇
冶金工业   1156篇
原子能技术   226篇
自动化技术   668篇
  2024年   40篇
  2023年   478篇
  2022年   553篇
  2021年   789篇
  2020年   769篇
  2019年   736篇
  2018年   665篇
  2017年   819篇
  2016年   777篇
  2015年   701篇
  2014年   1118篇
  2013年   1163篇
  2012年   1343篇
  2011年   1577篇
  2010年   1255篇
  2009年   1180篇
  2008年   1084篇
  2007年   1402篇
  2006年   1310篇
  2005年   1122篇
  2004年   1069篇
  2003年   876篇
  2002年   818篇
  2001年   629篇
  2000年   546篇
  1999年   413篇
  1998年   298篇
  1997年   269篇
  1996年   199篇
  1995年   185篇
  1994年   168篇
  1993年   101篇
  1992年   114篇
  1991年   82篇
  1990年   60篇
  1989年   45篇
  1988年   49篇
  1987年   23篇
  1986年   15篇
  1985年   21篇
  1984年   20篇
  1983年   9篇
  1982年   14篇
  1981年   4篇
  1980年   7篇
  1979年   7篇
  1977年   2篇
  1976年   2篇
  1973年   1篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
71.
A cross-sectional study was conducted to investigate the impact of solid fuel use for heating and cooking on blood pressure (BP) and hypertension, using data from the China Health and Retirement Longitudinal Study (CHARLS). The primary fuels used for indoor heating and cooking were collected by questionnaires, respectively. Hypertension was defined based on self-report of physician's diagnosis, and/or measured BP, and/or anti-hypertensive medication use. Multivariate logistic regression models were constructed to assess the associations. Among 10 450 eligible participants, 68.2% and 57.2% used indoor solid fuel for heating and cooking, respectively. Compared with none/clean fuel users, solid fuel for heating was associated with elevated BP (adjusted β: 2.02, 95% CI: 1.04–3.01 for systolic BP; adjusted β: 1.36, 95% CI: 0.78–1.94 for diastolic BP) and increased risk of hypertension (adjusted odds ratio: 1.15, 95% CI: 1.03–1.29). The impact of indoor solid fuel for heating on BP was more evident in rural and north residents, and hypertensive patients. We did not detect any significant associations between solid fuel use for cooking and BP/hypertension. Indoor solid fuel use is prevalent in China, especially in the rural areas. Its negative impact on BP suggested that modernization of household fuel use may help to reduce the burden of hypertension in China.  相似文献   
72.
An ideal polymer electrolyte membrane fuel cell (PEMFC) is one that continuously generates electricity as long as hydrogen and oxygen (or air) are supplied to its anode and cathode, respectively. However, internal and/or external conditions could bring about the degradation of its electrodes, which are composed of nanoparticle catalysts. Particularly, when the hydrogen supply to the anode is disrupted, a reverse voltage is generated. This phenomenon, which seriously degrades the anode catalyst, is referred to as cell reversal. To prevent its occurrence, iridium oxide (IrO2) particles were added to the anode in the membrane-electrode assembly of the PEMFC single-cells. After 100 cell reversal cycles, the single-cell voltage profiles of the anode with Pt/C only and the anodes with Pt/C and various IrO2 contents were obtained. Additionally, the cell reversal-induced degradation phenomenon was also confirmed electrochemically and physically, and the use of anodes with various IrO2 contents was also discussed.  相似文献   
73.
To overcome nitrogen and iron deficiency in the organic fraction of municipal solid waste, amino acids and ferric oxide were separately added in the feedstock to evaluate their effect on hydrogen production. Furthermore, synergic effect of amino acids and ferric oxide on hydrogen production was evaluated. The co-culture of E. coli and Enterobacter aerogenes was used in the present study. The amino acids were applied in the concentration range of 1.0, 2.5, 5.0, 7.5 and 10.0 g/L while ferric oxide was used in the concentration range of 10, 20, 30, 40, 50, 100, 150, 200 and 500 mg/L. Modified Gompertz model was used to analyze cumulative hydrogen production (P), maximum hydrogen production rate (Rmax) and lag phases (λ). The results exhibited that the hydrogen production was positively affected by each amino acid at every concentration applied. Application of alanine resulted in the highest cumulative and volumetric hydrogen production of 685.4 ± 10.1 mL and 1.9561LH2/Lsubstrate respectively which increased to 872.5 ± 10.1 mL and 2.492LH2/Lsubstrate for ferric oxide addition along with alanine. COD removal and VFA generation were positively affected by the synergic effect of amino acid and ferric oxide.  相似文献   
74.
75.
王建  赵亚风  乔晓林  李兴刚  赵慧 《化工进展》2020,39(z2):312-318
复合固体推进剂含有固体颗粒较多,离散单元法是一种适合固体推进剂生产过程数值仿真的有效方法,颗粒物料的接触参数是保证离散单元法仿真精度的关键。本文以复合固体推进剂的主要组分铝粉和高氯酸铵固体颗粒为研究对象,通过实验测试获得了相关物料的安息角,利用专业离散元软件EDEM仿真模拟了安息角测试实验过程,建立了物料安息角与接触参数之间的联系。研究表明,滚动摩擦系数和滑动摩擦系数越大,安息角越大,物料流动性越差。对比仿真与实验结果,通过逆向反推法确定了物料的滑动摩擦系数和滚动摩擦系数两个关键接触参数。铝粉与高氯酸铵1∶2混合颗粒的滑动摩擦系数为0.2,滚动摩擦系数为0.05。为固体推进剂加工生产过程离散元数值仿真提供了关键基础数据。  相似文献   
76.
In the present study an advanced pillar splitting method is used to determine the fracture toughness of a garnet-type Li7La3Zr2O12 (LLZO) electrolyte. The obtained results are compared to data derived on the basis of conventional Vickers indentation. Furthermore, potential micro-pillar size effects are investigated. The estimated fracture toughness values for single grains and polycrystalline LLZO material obtained via both methods are in good agreement, yielding ∼ 1 MPa m0.5, hence the data indicate that LLZO exhibits relatively low fracture toughness and has a brittle behavior.  相似文献   
77.
《Ceramics International》2020,46(14):22282-22289
Self-assembly is an emerging strategy for preparing composite cathodes with good oxygen electrochemical reduction activity and congenital chemical compatibility for intermediate-temperature solid oxide fuel cell (IT-SOFC). Here we report that a self-assembled BaCo0.6Zr0.4O3-δ (BZC-BC) nanocomposite is prepared through one-pot glycine-nitrate process and exhibits high cathode performance. The BZC-BC nanocomposite is composed of 62 mol% cubic perovskite BaZr0.82Co0.18O3-δ (BZC) as an ionic conductor and 38 mol% hexagonal perovskite BaCo0.96Zr0.04O2.6+δ (12H-BC) as a mixed ionic and electronic conductor. The BZC-BC nanocomposite has the pomegranate-like particles aggregated with a larger number of nanoparticles (50-100 nm) which greatly enlarge the three-phase boundary sites. The BZC-BC nanocomposite exhibits a thermal expansion coefficient of 12.89 × 10−6 K−1 well-matched with that of Ce0.8Gd0.2O3-δ (12.84 × 10−6 K−1) electrolyte. The high electro-catalytic activity of BZC-BC nanocomposite cathode for oxygen reduction is reflected by the low polarization resistances of oxygen ions incorporation at cathode/electrolyte interface (0.02823 Ω cm2), oxygen species diffusion (0.03702 Ω cm2) and oxygen adsorptive dissociation (0.07609 Ω cm2) at 700 °C. The single cell with BZC-BC nanocomposite cathode achieves the maximum power density of 1094 mW cm−2 at 650 °C and shows good stability under 25 h run.  相似文献   
78.
Free-standing Li1.5Al0.5Ti1.5P3O12 electrolyte sheets with a thickness of 50–150 μm were prepared by tape casting followed by sintering at 850–1000 °C in air. While a sintering temperature of 850 °C was too low to achieve appreciable densification and grain growth, a peak relative density of 95% was obtained at 920 °C. At higher sintering temperatures, the microstructure changed from a bimodal grain size distribution towards exclusively large grains (> 10 μm), accompanied by a decrease in relative density (down to 86% at 1000 °C). In contrast, ionic conductivity increased with increasing sintering temperature, from 0.1 mS/cm at 920 °C to 0.3 mS/cm at 1000 °C. Sintering behavior was improved by adding 1.5% of amorphous silica to the slurry. In this way, almost full densification (99.8%) and an ionic conductivity of 0.2 mS/cm was achieved at 920 °C.Mechanical characterization was carried out on the almost fully densified material, yielding elastic modulus and hardness values of 109 and 8.7 GPa, respectively. The fracture strength and Weibull modulus were also characterized. The results confirm that densification and reduction of grain size improve the mechanical properties.  相似文献   
79.
80.
《Ceramics International》2020,46(12):19835-19842
The present work focused on the effect of Y2O3 co-doping on the phase composition, microstructure, ionic conductivity and thermal shock resistance of 8 mol% MgO stabilized ZrO2 (Mg-PSZ) electrolyte ceramics for high temperature applications. The addition of Y2O3 could promote the process of monoclinic-to-cubic/tetragonal phase transformation and became the metastable phase at room temperature. Meanwhile, the grain size of Mg-PSZ decreased. It was demonstrated that an appreciable increase in the ionic conductivity and compressive strength occurred on substituting MgO with Y2O3 in the Mg-PSZ electrolyte ceramics across the measured temperature range. Moreover, the Y2O3 addition could restrain the adverse effect of the cyclic thermal shock on the ionic conductivity and compressive strength of Mg-PSZ. The main reason was that the increase of the amount of monoclinic phase caused by cubic/tetragonal-to-monoclinic phase transformation by the cyclic thermal shock was restrained after the Y2O3 addition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号